

Thoroughly Modern Perl

William Lindley
The Lindley Company LLC

Perl 5, Perl 6: Different animals

● Perl 6, announced in 2000, is still not a stable
platform − actually a separate language

● Perl 5.20 released May 2014
● Perl 5 continues development

stronger than ever

Perlbrew

● http://perlbrew.pl/
● Simple install:

– \curl -L http://install.perlbrew.pl | bash
(or)

– sudo cpan App::perlbrew

– perlbrew init

Perlbrew

● Manage multiple perl installations under your
$HOME directory.

● Individual users or web applications operate
independently

● Self-compiled (once!) to fit your system perfectly
● Don't need sudo to install modules (Pro: Can keep

multiple versions across system for compatibility;
Con: Each user's copy of perlbrew and modules
must be updated separately when required)

Perlbrew is simple

● To install the latest stable release, and use it
permanently:
– perlbrew install perl-5.20.0

– perlbrew switch perl-5.20.0

● All this requires only one extra line appended to
~/.bash_profile :
– source ~/perl5/perlbrew/etc/bashrc

Baked In Unicorns Unicode

● Supports UTF-8 and other stream types in
addition to ASCII

● UTF-8 is self-synchronizing: can find code point
boundaries wihout reading from the beginning
of the string.

Unicode in Perl

● use utf8; # at start of file
tells Perl the source code is in Perl.

● use 5.012; (or) use v5.14; # or higher
tells Perl to process strings internally as Unicode
logically-wide characters

● open FH, ">:utf8", "file";
opens a file (stream) with Unicode encoding layer

● binmode(STDOUT, ":utf8");
reopens standard output with Unicode encoding

Unicode characters

● As a Perl one-liner

$ perl e 'use v5.14; use charnames
":full"; binmode(STDOUT,":utf8");
print "\N{GREEK SMALL LETTER SIGMA}"'
σ
$

● http://www.unicode.org/charts/charindex.html

Seamless Unicode

use v5.14;
use utf8;

binmode(STDOUT,":utf8");
use Unicode::Collate;
my @words=qw(crow cräme cream crême);

print join(' ', Unicode::Collate>
 new>sort(@words));

→ cräme cream crême crow

Perl 5's Built-in Object System

● Added 1994, with Perl 4 → 5 transition
● A class is just a package (namespace).
● A method is just a subroutine
● Attributes are… stored however the class/module wants
● Instances are “blessed” references.

– Package MyClass 1.07 {
 sub new {
 my $class = shift;
 return bless { }, $class; # { } here is an anonymous hash
 }
}

Modern Perl: use Moose;

● Simple to code
– package Cat {

 use Moose;

 }

● Automatically gives you functions:
– my $muffin = Cat->new;

Moose: Methods

 package Cat {

 use Moose;

 sub meow {

 my $self = shift;

 say 'Meow!';

 }

 }
● my $muffin = Cat->new;

$muffin->meow;

Moose: Attributes

 package Cat {

 use Moose;

 has 'name', is => 'ro', isa => 'Str';

 }

 my $muffin=Cat->new(name => 'muffin');
 print $muffin->name;

Why this works: Syntactic Sugar

● Moose's documentation uses parentheses to
separate attribute names and characteristics:

 has 'name' => (is => 'ro', isa => 'Str');
● This is equivalent to:

 has('name', 'is', 'ro', 'isa', 'Str');

Integrating with Databases

● Brute force

 my $sth = $dbh->prepare("INSERT INTO people

 (address, city, name, phone, state)

 VALUES (?, ?, ?, ?, ?)");

 $sth->execute('42 Sister Lane', 'St. Louis',
 'Jimbo Bobson', '123-456-7890',
 'Louisiana');

With use SQL::Abstract;
 my $sql = SQL::Abstract->new;

 my %data = (

 name => 'Jimbo Bobson', phone => '123-456-7890',

 address => '42 Sister Lane', city => 'St. Louis',

 state => 'Louisiana',

);

 my($stmt, @bind) = $sql->insert('people', \%data);

Which would give you something like this:

 $stmt = "INSERT INTO people (address, city, name, phone, state)

 VALUES (?, ?, ?, ?, ?)";

 @bind = ('42 Sister Lane', 'St. Louis', 'Jimbo Bobson', '123-456-7890', 'Louisiana');

These are then used directly in your DBI code:

 my $sth = $dbh->prepare($stmt);

 $sth->execute(@bind);

With use DBIX::Class;

● Create a schema class called MyApp/Schema.pm:

package MyApp::Schema;

use base qw/DBIx::Class::Schema/;

__PACKAGE__>load_namespaces();

1;

●Create a result class to represent
artists, who have many CDs…

● in MyApp/Schema/Result/Artist.pm:

package MyApp::Schema::Result::Artist;

use base qw/DBIx::Class::Core/;

__PACKAGE__>table('artist');

__PACKAGE__>add_columns(qw/ artistid name /);

__PACKAGE__>set_primary_key('artistid');

__PACKAGE__>has_many(cds =>
'MyApp::Schema::Result::CD', 'artistid');

1;

Then you can…
Connect to your database.

use MyApp::Schema;

my $schema = MyApp::Schema-
>connect($dbi_dsn,$user, $pass, \
%dbi_params);

Query for all artists and put them in an
array,

or retrieve them as a result set object.

$schema->resultset returns a
DBIx::Class::ResultSet

my @all_artists = $schema-
>resultset('Artist')->all;

Output all artists names

foreach $artist (@all_artists) {

 print $artist->name, "\n";

}

Create a result set to search for
artists.

This does not query the DB.

my $johns_rs = $schema-
>resultset('Artist')->search(

 # Build your WHERE using an
SQL::Abstract structure:

 { name => { like => 'John%' } }

);

Execute a joined query to get the cds.

my @all_john_cds = $johns_rs-
>search_related('cds')->all;

Evolution of Perl Webstuff

● Apache − perl.cgi
● Apache+mod_perl
● Nginx − starman − framework (mojolicious)

Mojo: Rapid development

● http://mojolicio.us/
● Think “Ruby on Rails” in the Perl world
● Based on Moose
● Has a “lite” version (like Sinatra) but can easily turn

Mojolicious::Lite programs into full-blown systems
● RESTful routes, plugins, commands, Perl-ish

templates (Template::Toolkit), session management,
form validation, testing framework, static file server…

Mojo: Easy to create and deploy

● Auto-detects standalone, CGI, PSGI environment
● Contains a very portable non-blocking I/O HTTP

and WebSocket server with Mojo::Server::Daemon.
It is usually used during development and in the
construction of more advanced web servers, but is
solid and fast enough for small to mid sized
applications.

● Supports TLS and WebSockets out of the box
● JSON, HTML/XML parser, CSS selector support

Three line web application

use Mojolicious::Lite;

get '/' => {text => 'Hello World!'};

app->start;
● Then run it with:

$ morbo hello.pl

Server available at http://127.0.0.1:3000.

$ curl http://127.0.0.1:3000/

Hello World!

Thoroughly Modern Perl

William Lindley
The Lindley Company LLC

http://wlindley.com
904-404-5512

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24

