Thoroughly Modern Perl

Unmettebed Power for
Text Processing and Scripting

Cfrmmatfc

William Lindley
The Lindley Company LLC

Perl 5, Perl 6: Different animals

* Perl 6, announced in 2000, is still not a stable
nlatform — actually a separate language

* Perl 5.20 released May 2014

* Perl 5 continues development
stronger than ever

Perlbrew

 http://perlbrew.pl/

e Simple install:

- \curl -L http://install.perlbrew.pl | bash
(or)

— sudo cpan App::perlbrew

— perlbrew Init

. Perlbrew

Perlbrew

 Manage multiple perl installations under your
$HOME directory.

 |ndividual users or web applications operate
iIndependently

» Self-compiled (once!) to fit your system perfectly

* Don't need sudo to install modules (Pro: Can keep
multiple versions across system for compatibility;
Con: Each user's copy of perlbrew and modules
must be updated separately when required)

Perlbrew Is simple

 To Install the latest stable release, and use it
permanently:

- perlbrew install perl-5.20.0
- perlbrew switch perl-5.20.0

 All this requires only one extra line appended to
~/.bash_profile :

— source ~/perl5/perlbrew/etc/bashrc

Baked In Ynteerhs Unicode

» Supports UTF-8 and other stream types in
addition to ASCII

 UTF-8 Is self-synchronizing: can find code point
boundaries wihout reading from the beginning
of the string.

Bits of First Last Bytes in Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6
code point code point code point sequence

7 U+0000 U+007F 1 B AAAAN,
11 U+0080 U+07FF 2 11000y | 1E0xX
16 U+0800 U+FFFF 3 111000 | 10000000 | 1O
21 U+10000 U+1FFFFF 4 11110xxx | 1Oxxxxxx | 1OxxXXxxX | 1OXXXHKX
26 U+200000 |U+3FFFFFF 5 111338 | 1@0000000 | 10000000 | TE00000C | 1000000
31 U+4000000 U+7FFFFFFF 3] 1111110x | 1OxxxxXXX | 1OxxxXXXX | 1ExxxxxX | 1E000000 | L8000

Unicode In Perl

use utf8; # at start of file
tells Perl the source code is In Perl.

use 5.012; (or) use v5.14; # or higher
tells Perl to process strings internally as Unicode
logically-wide characters

open FH, ">:utf8", "file";
opens a file (stream) with Unicode encoding layer

binmode(STDOUT, ":utf8");
reopens standard output with Unicode encoding

Unicode characters

e As a Perl one-liner

$ perl -e 'use v5.14; use charnames
".full"; binmode (STDOUT, ":utf8") ;

print "\N{GREEK SMALL LETTER SIGMA}"'

o)
$

 http://www.unicode.org/charts/charindex.html

Seamless Unicode

use vbh.14;
use utf8;

binmode (STDOUT, ":utf8") ;
use Unicode::Collate;
my @words=gw (Crow crame cream Ccréme) ;

print join(' ', Unilicode::Collate->
new->sort (@words)) ;

- Ccrame cream Ccréme Ccrow

Perl 5's Built-in Object System

e Added 1994, with Perl 4 - 5 transition

« Aclass is just a package (namespace).

A method is just a subroutine

 Attributes are... stored however the class/module wants

e |nstances are “blessed” references.

- Package MyClass 1.07 {
sub new {
my $class = shift;
return bless { }, $class; # {} here is an anonymous hash
}
}

Modern Perl: use Moose:

* Simple to code

- package Cat {
use Moose;

}
* Automatically gives you functions:

- my $muffin = Cat->new;

Moose: Methods

package Cat {
use Moose;
sub meow {
my $self = shift;
say ‘Meow!’;

}

* my $muffin = Cat->new;
$muffin->meow;

Moose: Attributes

package Cat {
use Moose;
has 'name’, is => 'ro', isa => 'Str";

}

my $muffin=Cat->new(name => 'muffin');
print $muffin->name;

Why this works: Syntactic Sugar

 Moose's documentation uses parentheses to
separate attribute names and characteristics:

has 'name' => (Is => 'ro', Isa => 'Str');
* This is equivalent to:
has('name’, 'is', 'ro’, 'isa’, 'Str');

Integrating with Databases

 Brute force

my $sth = $d
(ac
VA

0
C

n->prepare("INSERT INTO people
ress, city, name, phone, state)

UES (2,2, 2,2, 2)");

$sth->execute('42 Sister Lane', 'St. Louis',
'‘Jimbo Bobson', '123-456-7890",
'Louisiana’);

With use SQL::Abstract;

my $sql = SQL::Abstract->new;

my %data = (
name => 'Jimbo Bobson', phone =>'123-456-7890',
address => '42 Sister Lane', city =>'St. Louis',
state => 'Louisiana’,

);

my($stmt, @bind) = $sqgl->insert('people’, \%data);

Which would give you something like this:
$stmt = "INSERT INTO people (address, city, name, phone, state)
VALUES (?,?,?,?,?)";
@bind = ('42 Sister Lane', 'St. Louis', 'Jimbo Bobson', '123-456-7890', 'Louisiana’);

These are then used directly in your DBI code:
my $sth = $dbh->prepare($stmt);
$sth->execute(@bind);

With use DBIX::Class:

» Create a schema class called MyApp/Schema.pm:
package MyApp: :Schema;

use base gw/DBIx::Class::Schema/;

___PACKAGE___ ->1load_namespaces () ;

*Create a result class to represent
artists, who have many CDs...

* in MyApp/Schema/Result/Artist.pm:
package MyApp::Schema: :Result::Artist;

use base gw/DBIx::Class::Core/;

___PACKAGE__ ->table('artist');
___PACKAGE__ ->add_columns (gw/ artistid name /) ;
___PACKAGE ->set primary key('artistid') ;

___PACKAGE__ ->has_many (cds =>
'MyApp: :Schema: :Result::CD', 'artistid');

1;

Then you can...

Connect to your database.

use MyApp::Schema; # Create a result set to search for

my $schema = MyApp::Schema- artists.
>connect($dbi_dsn,$user, $pass, \ _
%dbi_params): # This does not query the DB.

my $johns_rs = $schema-

> 1 H 1 _>
Query for all artists and put them in an resultset(Artist)->search(

array, # Build your WHERE using an
SQL::Abstract structure:

{ name => { like =>'John%'} }

or retrieve them as a result set object.

$schema->resultset returns a
DBIx::Class::ResultSet);

my @all_artists = $schema-

>resultset('Artist')->all; ..
() # Execute a joined guery to get the cds.

my @all_john_cds = $johns_rs-

Output all artists names >search_related('cds’)->all;

foreach $artist (@all_artists) {
print $artist->name, "\n";

}

Evolution of Perl Webstuff

* Apache — perl.cgl

 Apache+mod_perl
* Nginx — starman — framework (mojolicious)

Mojo: Rapid development

http://mojolicio.us/
Think “Ruby on Rails” in the Perl world
Based on Moose

Has a “lite” version (like Sinatra) but can easily turn
Mojolicious::Lite programs into full-blown systems

RESTful routes, plugins, commands, Perl-ish
templates (Template::Toolkit), session management,
form validation, testing framework, static file server...

Mojo: Easy to create and deploy

e Auto-detects standalone, CGI, PSGI environment

« Contains a very portable non-blocking I/O HTTP
and WebSocket server with Mojo::Server::Daemon.
It Is usually used during development and in the
construction of more advanced web servers, but is
solid and fast enough for small to mid sized
applications.

» Supports TLS and WebSockets out of the box
 JSON, HTML/XML parser, CSS selector support

Three line web application

use Mojolicious::Llite;
get '/ => {text => 'Hello World!};
app->start;
* Then run it with:
$ morbo hello.pl
Server available at http://127.0.0.1:3000.
$ curl http://127.0.0.1:3000/
Hello World!

Thoroughly Modern Per|

William Lindley
The Lindley Company LLC
http://wlindley.com
904-404-5512

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24

